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The aim of this work was to investigate the role played by an external field on the
Casimir energy density for massive fermions under S1 × R3 topology. Both twisted-
and untwisted-spin connections are considered and the calculation in a closed form
is performed using an alternative approach based on the combination of the analytic
regularization method and the Euler–Maclaurin summation formula. It is shown that no
mass scale appears in the final result and, therefore, Casimir effect arises only from the
boundary conditions and vacuum fluctuations induced by the coupling with the external
field.
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1. INTRODUCTION

The Casimir force between two parallel perfectly conducting plates is one of
the most remarkable manifestations of quantum vacuum fluctuations. It was first
predicted on theoretical grounds by Casimir (1948) and experimentally verified on
a qualitative level by Sparnaay (1948) 10 years later. High accuracy experiments
have been performed by Lamoreaux (1997) and by Mohideen and Roy (1998) and,
more recently, by Bressi et al. (2002). For a more detailed account on the subject
there are excellent reviews in the literature (Bordag et al., 2002; Mostepanenko
and Trunov, 1997; Plunien et al., 1986).

Employing Casimir essential ideas, Johnson (1975) investigated the effects
of boundaries on a massless Dirac field in the context of MIT-bag model (Chodos
et al., 1974a,b) and found an energy density shift of the same order of magnitude
as that obtained by Casimir for the electromagnetic field. Adopting Johnson’s
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extended approach to the Casimir effect, in order to allow for other quantum
fields, many authors have investigated the effects of different boundary conditions
on the corresponding fields (DeWitt et al., 1979). Hence, one can say that a modern
view of the subject might take into account those effects due to nontrivial space
topologies on the vacuum of relevant physical quantum fields.

It is worthwhile to note that, in this general context, some Casimir setups
(field + boundary condition + external sources) present quite complicated final
expressions for the Casimir energy density, which ultimately obscure any possible
physical interpretation. In particular, the results obtained in Ford (1980) for the
massive spinor field indicate a mass dependent energy density which calls for
a deeper investigation. Similar difficulties also appear in the case considered in
Cougo-Pinto et al. (2001) where the fermion field is also subjected to an external
magnetic field.

In order to handle the above-mentioned shortcomings, we present here an
alternative treatment that allows us to extract new information concerning the role
of mass and that of an external field to the fermionic Casimir effect. This is achieved
by a suitable combination of the method of analytic regularization using a suitable
gamma function representation (also called α-representation (Bogoliubov and
Shirkov, 1959)) and the well-known Euler–Mclaurin summation formula (Leavitt
and Morrison, 1982).

The paper is organized as follows: In the next section the massive spinor field
with both untwisted and twisted spin connections is considered. In Section 3, the
effects of a weak external constant and homogeneous magnetic field is taken into
account and the connection with the so-called Euler–Kockel–Heisenberg (E-K-H)
Effective Lagrangian density (Euler, 1936; Euler and Kockel, 1935; Heisenberg
and Euler, 1936) is addressed. Finally, in Section 4, we make some concluding
remarks, pointing out directions of future investigations.

2. THE MASSIVE SPINOR FIELD: S1 × R3

The case of noninteracting spinor fields subjected to S1 × R3 space topology
with twisted- and untwisted-spin connections was first considered by DeWitt et al.
(1979) and, 1 year later, generalized to the massive case by Ford (1980), who
obtained an intricate mass dependent expression for the vacuum energy density.
In what follows we will re-derive these results using an alternative procedure.

2.1. Untwisted Case

Following Ford (1980), the vacuum energy density for the untwisted spinor
field is given by

εunt
0 = − 2

(2π )2L

∞∑
n=−∞

∫ ∞

−∞
dpx dpy

[
m2 + p2

x + p2
y + p2

z

]1/2
. (1)
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where pz = a2n2, with n = 0,±1,±2, . . . and a = 2π/L.
In (1), the integrals are quadratically divergent quantities which claim for a

consistent regularization prescription. Despite the familiar regularization methods
found in the literature (Bogoliubov and Shirkov, 1959; Bonneau, 1990), we shall
consider here yet another one, which proves to be useful. It consists in the com-
bination of the analytic regularization scheme, using the gamma function integral
representation, with the so-called Euler–Mclaurin summation formula (Leavitt and
Morrison, 1982). To see how this works, we start by taking the analytic extension
of the integrand in (1), which turns out to be a regular functional. This is achieved
by means of the gamma function integral representation

1

A1+δ
= 1

�(1 + δ)

∫ ∞

0+
dη ηδ e−Aη , (2)

valid for δ > −1, which allows us to rewrite (1) as

(
εunt

0

)R = 1

2πL

1
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0+
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= − 1

2πL

1

�(−1/2 + δ)

∫ ∞

0+
dη η−5/2+δ

[
e−m2η + 2

∞∑
n=1

e−(m2+a2n2)η

]
,

(3)

where we have already performed two gaussian integrals in px and py . Instead of
using the Abel–Plana formula (Erdélyi et al., 1953; Mostepanenko and Trunov,
1953), the divergent sum over n appearing in (3) will be performed by means of
the Euler–Mclaurin summation formula (Leavitt and Morrison, 1982)

N∑
n=M

f (n) =
∫ N

M

F (x)dx + 1

2
[f (N ) + f (M)] +

K∑
k=1

B2k

2k!
[F 2k−1(N )

−F 2k−1(M)] + 1

(2K + 1)!

∫ M

N

B2K+1(x − [x])F 2K+1(x) dx (4)

where Bm ≡ Bm(0), the Bm(x) are the Bernoulli polynomials and F is an arbitrary
function defined on the complex-plane such that, if n is integer and M ≤ n ≤
N , then F (n) = f (n). We preserve here the same notation used in (Leavitt and
Morrison, 1982). The last term in (4), also called the remainder term, vanishes if
F (z) is an entire function. In the present context, identifying the entire function
f (n) with

f (n) = e−(m2+a2n2)η. (5)
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and, since 0 ≤ n ≤ ∞, we are allowed to rewrite (3) as

(ε0)R = 1

(2π )L

π

�(−1/2 + δ)

{∫ ∞

0+
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0
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12
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720
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720
f ′′′(n)|n→0 + · · ·

]}
(6)

where f ′(n) means the first derivative of (5) with respect to n and so on. Cal-
culating the derivatives and taking the corresponding limits we see that the only
nonvanishing terms give

(
εunt
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. (7)

In going from expression (6) to (7) we notice that only the (n → ∞)-terms con-
tribute to the energy density. Usually, the methods found in the literature extract
information arising from the (n → 0)-terms and, as we will see below, this gen-
erates quite different final results. It must be stressed that, while the exponential
function in (5) is an analytical function over the entire complex plane, the power
function in the integrand of (1) is a multivalued function, which has a branch cut
along the real axis (Courant and John, 1974). Further, analyzing the structure of
(7), we see that the fermion mass appearing in the denominator of the last three
terms may be neglected since in those terms n → ∞. This point is crucial since the
limit accounts for the partial elimination of the fermion mass. In fact, m remains
in the kernel of the first term but, as will be shown later, this term will be cancelled
against the Minkowiski vacuum energy.

In order to be consistent with the original theory we now take the limit δ → 0
in (7). However, we must first handle the divergent contribution arising from the
second term in the curly brackets. This is done through the freedom in the choice
of δ in (7). In fact, due (3), δ are constrained to be greater than 1/2. Thus, to
obtain the correct final result, the considered region in the complex plane must be
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analytic continued to δ ≥ 1. As a result we have

εunt
0 = 1

8π2

∫ ∞

0
dη η−3e−m2η − π2

720L4
. (8)

Since we are dealing with negative energies (associated to the fermionic vacuum)
we define the Casimir energy difference by subtracting (8) from the corresponding
usual Minkowiski vacuum energy (which corresponds to taking L → ∞ in (8)).
In this way, we find the fermionic Casimir energy density

�εunt = 2π2

45L4
, (9)

which is in complete agreement with (De Witt et al., 1979), the only difference
being a factor 2, which reflects the four-component spinor field representation we
are using. De Witt et al. (1979) considered a two-component spinor field, instead.

2.2. Twisted Case

Expression (14) clearly shows the independence of the Casimir energy density
with respect to the fermion mass. This feature also occurs when twisted boundary
condition is considered. In this case pz = (2n + 1)a, with n = 0,±1,±2, . . . and
a = π/L. The regulated vacuum energy density is now given by

(
εtwi

0

)R =
√

π

(2π )2L

∞∑
n=−∞

∫ ∞

0
dη η−5/2e−(m2+(2n+1)2a2)η. (10)

Since the above integral is regular, we are allowed to interchange the sum and the
integral, and then use the obvious mathematical trick

∞∑
n=−∞
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∞∑
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Thus, the problem of solving the twisted case reduces to that of computing two
terms proportional to that in the untwisted case. In fact, we have

εtwi
0 = 1

23
εunt

0 − εunt
0

= − 7

16(2π )2

∫ ∞

0+
dη η−3e−m2η + 2

7π2

360L4
. (12)

Again, subtracting this result from that where L → ∞, we obtain

�εtwi
0 = −2

7π2

360L4
, (13)
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which coincides with the familiar result found in the literature for the massless
fermionic Casimir effect (DeWitt et al., 1979).

3. THE INFLUENCE OF AN EXTERNAL FIELD

Another interesting problem to be analyzed using the present construct is
related to the influence of an external magnetic field on the Casimir energy associ-
ated with the Dirac field. This problem has been recently proposed in the context
of Effective Quantum Electrodynamics using the so-called Schwinger proper-time
method (Cougo-Pinto et al., 2001). However, a clear answer concerning the role of
the external field on the fermionic Casimir energy density is yet an open problem
which deserves further investigation. The purpose of this section is to implement,
in the context of Weisskopf method (Weisskopf et al., 1936; Tomazelli and Costa,
2003), the prescription presented in the previous sections in order to get a better
understanding of the above mentioned problem.

We restrict our calculation to the case where an untwisted massless spinor
field is subjected to an external weak and constant uniform magnetic field. As is
well known (Berestetskii et al., 1982), the negative energy levels for an electron
of charge e = −|e| in the presence of an uniform and constant magnetic field
Hz = −H is given by

−ε(−)
p,σ = −

√
(2n + 1 − σ )|e|H + p2

z , (14)

where n = 0, 1, 2, 3 . . . and σ = ±1. Taking into account the density of states in
the interval dpz

|e|H
2π

dpz

2π
(15)

and the fact that all the levels except n = 0, σ = 1 are doubly degenerate (the
levels n, σ = −1 and n + 1, σ = 1 coincide), we obtain the energy density of
vacuum electrons,

ε′
0 = −

∑
p,σ

ε(−)
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= −|e|H
2π2

∫ +∞

−∞

{√
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z + 2
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√
2|e|Hn + p2

z

}
dpz. (16)

where pz turned out to be a discrete quantity in virtue of the untwisted S1 × R3

space topology we are assuming. Using (2), the energy density (16) may be
rewritten in the more convenient form,

(ε′
0)R = −|e|H

2πL
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= −|e|H
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with 2|e|Hn = α(n) ≡ α,

f (n′) = e−(an′)2η, (18)

and n′ = 0,±1,±2, . . . , a = 2π/L. Applying the Euler–Maclaurin formula (4)
and performing the corresponding derivatives and limits, we arrive at
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The sum in the integrands can be eliminated by noticing that
∞∑
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Furthermore, assuming the weak field regime, we are allowed to expand the kernel
of the integrals in (19), namely,
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×
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where ∑
≡

∞∑
k=2

22kBk

(2k)!
(|e|Hη)2k−1, (22)

and the Bk’s are the Bernoulli numbers.
We are now in position to perform, term by term in the expansion of integral

(21), the limit n′ → ∞. After a straightforward calculation we obtain

ε′
0 = |e|H

8π2

∫ ∞

0+
dη η2 coth(|e|Hη) − 2π2

45L4
, (23)

where the same kind of analytic extension made in the previous sections was
performed in the manipulation of the first term in the second line of (21). Again,
it gives no contribution.

Finally, the energy density of the empty space may be obtained by taking the
limit of zero field and infinite volume in (23). We must subtract (23) from this
quantity, obtaining

�ε0 = − 1

8π2

∫ ∞

0+

dη

η3
{|e|Hη coth(|e|Hη) − 1} + 2π2

45L4
, (24)

which clearly shows the influence of the external magnetic field to the fermionic
Casimir effect. It must be noted that the above expression recovers (9) in the limit
of zero magnetic field. In addition, the first term in (24) might be recognized as
the E-K-H correction to the effective Lagrangian density, which accounts for the
nonlinear effects induced by the external field in effective quantum electrody-
namics (Berestetskii et al., 1997; Bonneau, 1990; Courant and John, 1974; Euler,
1936; Euler and Kockel, 1935; Erdélyi et al., 1953; Heisenberg and Euler, 1936;
Mostepanenko and Trunov, 1988; Weisskopf, 1936; Tomazelli and Costa, 2003).
It provides exactly the same contribution obtained when the limit L → ∞ is con-
sidered, i.e., the contribution from the boundaries just add a field-independent
amount to the E-K-H effective Lagrangian density. The independence of both
effects clarify the physics governing the behavior of quantum fields under the
influence of external fields and/or boundaries conditions. The generalization of
the above calculation to the twisted case is immediate as well as the inclusion of
the fermion mass.

4. CONCLUDING REMARKS

Using an approach based on the combination of the analytic regularization
method through a representation and the Euler–Maclaurin summation formula,
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we have re-derived the fermionic Casimir energy densities. To this end, it was
considered a S1 × R3 space topology and the role played by the fermion mass and
that of an external field on the Casimir energy density were fully investigated.

As was shown in Section 3, our approach provided a powerful way to deal
with, in each step of the calculation, the divergences inherent to the theory. It
was found that the fermion mass does not play any influence on the twisted and
untwisted fermionic Casimir energy densities, which is in contrast with the first
results obtained by Ford (1980).

We have also shown that, when an external magnetic field is considered, its
effect on the Casimir energy density appears as an L-independent term (which was
ultimately identified with the well-known E-K-H effective Lagrangian density)
plus a term identical to that obtained when the external field is absent. This result
clearly shows the independence of the external field on the boundary conditions
in the weak field regime.

Finally, it must be emphasized that the present construct is a simple and
easily generalizable method to reexamine other phenomena. Among these are
those related to the Effective Quantum Electrodynamics in the context of the
“old-fashioned” Weisskopf’s method (Weisskopf, 1994), recently re-addressed
(Tomazelli and Costa, 2001).
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